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Invariant Forms and Hamiltonian Systems: 
A Geometrical Setting 
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A geometric proof is given of Lee Hwa Chung's theorem for regular Hamiltonian 
systems, which identifies all the possible differential forms left invariant by the 
dynamics. Applications of this theorem in the area of canonical transformations 
are also remarked in a purely geometrical context. 

1. I N T R O D U C T I O N  

In recent years, the number  of  works devoted to applying the methods 
of differential geometry to the formulation and resolution of different kinds 
of  physical problems and theories has been increasing. This application has 
been especially productive in the area of  mechanics and, in particular, in 
the study of the dynamics of  Hamiltonian systems (Abraham and Marsden, 
1978; Giachetti, 1981; Godbillon, 1969; Weinstein, 1977). 

Although many of the questions related to mechanics have been refor- 
mula ted in  this way, some aspects have not received an intrinsic treatment. 
In this paper,  we consider one of them, an important theorem (Lee Hwa 
Chung, 1947) in which the integral forms left invariant by the dynamics of  
regular Hamiltonian systems are studied. It is useful in order to characterize 
the canonical transformations of  these systems (Lee Hwa Chung, 1947; 
Gantmacher,  1975). In the original version of the theorem, its proof  as well 
as its applications were analyzed in a local-coordinate language. We present 
an original geometrical study of this theme. 

The paper  is structured as follows: In Section 2 we compile some 
concepts and fundamental  properties of  the Hamiltonian systems. In 
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Section 3 the Lee Hwa Chung theorem is stated in order to answer a question 
coming from a natural prosecution of several arguments in the previous 
section and we get a geometrical proof  of  it. Finally, Section 4 is devoted 
to showing the application of the theorem to the theory of  canonical 
transformations in a geometrical language which reveals the deep relation 
between the dynamical properties and the geometry of these systems. 

In our analysis only t ime-independent regular Hamiltonian systems 
with a finite number  of  degrees of  freedom will be considered. The results 
that we present here have been generalized to the case of  nonregular 
Hamiltonian systems (Gomis et aL, 1984; Carifiena et al., 1985). 

2. H A M I L T O N I A N  SYSTEMS 

The geometrical description of the Hamiltonian formalism of mechanics 
is realized by taking a symplectic manifold (M, 12) as the phase space of 
the physical system. I f  such a system admits a differentiable manifold Q as 
configuration space, the phase space is its cotangent bundle T 'Q,  which is 
endowed with a symplectic structure in a natural way and, in addition, this 
symplectic form is exact [that is, 0 e A1(T*Q)/12 = dO, where we denote by 
AP(M) the set of  differential p-forms in M].  

Given a symplectic manifold (M, 12), since 12 is a nondegenerate form, 
a canonical isomorphism ~ is induced between the set of  vector fields in 
M, ~ ( M ) ,  and the one of 1-forms: 

fi: ~ ( M )  ~ A I ( M ) / ~ ( X )  = cr ==- i(X)1),  V X  e ~ ( M )  

[i(X)12 means the contraction of X and 12]. As a consequence, every 
function f e A ~  has an associated vector field X = ~ ) - l ( d f ) ,  but the 
converse is not true. Then: 

Definition 2.1. Let (M, 1)) be a symplectic manifold. H e ~ ( M )  is a 
local Hamiltonian vector field (1Hvf) iff i(H)1) is a closed form [we will 
denote these forms by ZP(M)] .  Then the lemma of Poincar6 ensures that, 
for every point m e M, there are a neighborhood U c M and a function 
f e A ~  such that i(H)121tj=dflu. Such a function is called a local 
Hamiltonian function (1Hf) and the terna (M, 12, H )  is a local Hamiltonian 
system (1Hs). 

I f  i ( H ) ~  is an exact form, then H is a global Hamiltonian vector field 
and there is a global Hamiltonian function f ~  A~ such that i(H)1) = df  

We will denote by ~ m ( M )  and ~ ( M )  the sets of local and global 
Hamiltonian fields, respectively, and it is evident that ~H(M)  c ~fm(M). 

It is suitable to remember  (Abraham and Marsden, 1978; Godbillon, 
1969) that, given a differentiable manifold M, a vector field X e ~f(M), and 
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a p-form a e AP(M), we say that a is an absolute invariant form by X iff 
L ( X ) a  = 0  (Lie derivative). This is equivalent to F*a  =0,  where {F,} 
denotes the uniparametric group of diffeomorphisms generated by the flux 
of X. In a similar way, we say that a is a relative invariant form by X iff 
da  is an absolute invariant form by X. 

At this point we can state the following. 

Theorem 2.2. Let (M, ft) be a symplectic manifold and X c ~f(M). 
Then the necessary and sufficient condition (nsc) for X ~ f m ( M )  is 
L(X)n=O. 

Proof. Immediate  because II  is a closed form and hence 

.L(X)D = f i X ) d O  + di( X)Ft = di( X ) f l  = 0r i( X )fl c Z ' (  M ) 

<==>X~m(M) �9 

This is a very important result because it relates the locally Hamiltonian 
character of  vector fields to the closeness of  the symplectic form. An obvious 
corollary is: 

Corollary 2.3. Let (M, 12) be an exact symplectic manifold with D = dO 
and X ~ ~ ( M ) .  Then X ~ ~fm(M) if and only if 0 is a relative invariant 
form by X. 

3. LEE H W A  C H U N G  T H E O R E M  

We have just related the 1Hvf to the invariance of the symplectic form. 
Now we can search for other possible forms invariant by the set of  1Hvf. 
The answer to this question is given by a theorem which was proved (in a 
local-coordinate way) by Lee Hwa Chung. We prove it geometrically, in a 
coherent way with the rest of  the formalism. 

Theorem 3.1 (Lee Hwa Chung). Hypothesis: Let (M, ~ )  be a connected 
symplectic manifold and a e AP(M) be a nondegenerate form such that it 
is an absolute invariant form by every X e ~ m ( M ) .  

Thesis: I f p = 2 r  [ r c N - ( 0 ) ;  that is, p i s e v e n ] , t h e n a = c ( ^ ~ )  r ( c -  
ctn). 

I f p = 2 r - 1  [ r E ~ - ( 0 ) ;  that is, p is odd], then a =0.  

In order to prove this theorem, we need the following results: 

Lemma 3.2. With the hypothesis of the theorem: 
(i) For every 1Hvf Xh c ~ m ( M )  with 1Hf h ~ A~ (in any neighbOr- 

hood U c M) ,  there exists a unique associated form defined from a as 
era =- i(Xh)c~, and whose local expression (in U c  M)  is Crh = dh ^ ~, where 
/3 is a ( p - 2 ) - f o r m  which is independent of  Xh (it just depends on a) .  
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(ii) In turn, the form /3 c AP-2(M) is an absolute invariant form by 
the set ~~ 

Proof  ( i )S ince  a is nondegenerate, it induces an isomorphism 
~: g ~ ( M ) ~ A P - I ( M )  such that, VX~ ~ ( M ) ,  there is a unique ( p -  1)-form 
given by 

o- = a ( X )  ==- i ( X ) a  

Consider now, VX ~ ~ m ( M ) ,  the corresponding associated form o- = i(X)o~. 
Then, since a is invariant by ~m(M) ,  we have 

0 = L(X)o~ = d i ( X ) a  + i ( X )  do: = do'+ i ( X )  daCz~do- = - i ( X )  do~ (1) 

Now, taking two arbitrary functions f, g c A~ and their product fg  -= h 
A~ we have 

dh = d ( f g )  = f dg + g d f  

and the Hvf associated to h must be 

i( Xh )f~ = dh = f dg + g d f  = fi(Xg)l)  + gi( X f  )l~ 

= i ( f X g ) D  + i (gX f ) l )  = i ( fXg  + gXf) l~ r Xh = f X g  + g X f  

Now, contracting this vector field and a, we obtain the (p - 1)-form associ- 
ated to Xh, which can be expressed as a function of the corresponding ones 
to X f  and Xg in the following way: 

o" h = i( X h ) a  = i ( f X g  + gXf )  a =f / (Xg)a  + gi( X f )  a = fo-h + go'f 

and then 

do-h = d f  A tTg + fA  do-g + dg ^ o ' f+g A dtrf 

But, on the other hand, Xh ~ Y~m(M) and according to the hypothesis 
L ( X h ) a  =0;  therefore, taking into account (1), 

do'h = -- i (Xh)  da = - i ( f X g  + gXf )  da 

= f ( - i ( X g )  do~) + g ( - i ( X f )  da)  = f  dcrg + g do'f 

Comparing the two last expressions, we conclude 

d f  A o-g + dg A trs = O (2) 

Since f, g are arbitrary functions, we can take f = g  and then the last 
expression reduces to 

2 d f A o ' f = O r  Vf~ h ~  
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where /3f E AP-2(M). But this result holds Vf; then, coming back to (2), we 
obtain 

df  A dg ^ /3g + dg A df A /3f= df  A dg A (/3g-/3f)=O, 

Yf, g c A~ /3g-/3i=O 

and we conclude that/3 does not depend on the Hamiltonian functions or, 
what means the same thing, on the Hamiltonian vector fields. 

(ii) Let Xf, Xg be two arbitrary 1Hvf, f g �9 A~ their 1H functions 
(on any neighborhood U c M)  and o'f = i(Xj-)a, O'g = i(Xg)a the associated 
( p -  D-forms which, as we have just seen, can be expressed as o- F = dfA/3 
and O-g = dg ^/3. Then 

L(Xg)~ I = L(Xg)(df  A/3) = L(Xg) df  ^/3 - d f  A L ( X g ) / 3  

but taking into account that L(Xg) df = dL(Xg) f  and that L(Xg) f  = {f, g} 
we obtain 

L( Xg)(rf = d{f, g} A /3 -- df  A L( Xg)/3 (3) 

On the other hand, by using the definition of O-z, we obtain 

L(Xg)crf = L(Xg) i (Xf )a  = i([Xg, Xf])a + i (Xf )L(Xg)a  = i([ Xg, Xf])a 

where the fact that L(Xg) a = 0 as well as a known property of  the differential 
operators is used. But also [Xg, XI] = X(~g~; thereby 

L( Xg)o'f = i([ Xg, X f  ])a = i( X tf, gi)a = o'~f, gi = d {f, g} A /3 

and comparing with (3), we can conclude 

dfA L(Xg)fl = 0; V f e  A~ VXg c ~IH(M) 

whence L(X~)/3 = O, VXg �9 ~ m ( M ) .  �9 

Using these results, the proof  of  the theorem is performed as follows: 

Proof of Lee Hwa Chung theorem. We distinguish two cases: 
(a) I f  p = 2r. Following an induction procedure, we first prove: 

I f  r = 1, then a = Clf~ (C1 = ctn) 

In fact, i f H  ~ WIH(M), we have its associated form ~h = dh A/3 C AI(M)  
and then/3 �9 A~ which, according to Lemma 3.2, is invariant by ~IH(M);  
hence, 

0 = L(X)/3 = di(X)/3 + i (X)  d/3 = i (X)  d/3, VX E ~~ H(M ) 

but, taking into account that we can take a local basis of  ~ ( M )  made up 
by 1Hvf, this result is also valid VX �9 ~ ( M ) ,  and thus we have to conclude 
that d/3 = 0 and/3 = C1 (ctn). Hence, 

O-h = Ca dh = Cii( H)f~ = i( H ) C i a  
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On the other  hand,  O'H = i ( H ) a ;  therefore, compar ing  both results, we 
conclude that 

i ( H ) a  = i ( H ) C I ~ ,  Y H  c g~H(M)r ct = Clf~ 

I f  we assume now that  the theorem holds for r -  1, we next prove that 
it holds for r; that is: 

I f  every form of  degree 2 ( r -  1) being absolute invariant by C~IH(M ) 
can be expressed a s  os 2 ( r - l )  ~ C r _ l ( ^ ~ )  r-1 ( C r _  1 = ctn), then every form of  
degree 2r being absolute invariant by ~ m ( M )  can be expressed as a 2r= 
Cr(Atl)" (Cr = ctn). 

In fact, let us consider  the form a2r~ A2r(M) and the corresponding 
one associated to an arbitrary vector field H c ~ l n ( M ) .  Once again from 
Lemma 3.2 we have that  O'H=dh A]3 is now ]3 c A2~r-1)(M), which is 
invariant by  ~IH(M).  Hence,  by the hypothesis,  ]3 = Cr_l(Af~) r-1 and, 
consequently,  

O'h = Cr-1 dh(Af~) r 1= Cr_a( i (H) f~) (^~)r -1  

= (1 / r )C~_l i (H) (A f~)  ~ 

= i( H ) (  C~( Af~ ) r) 

where use is made  of  the proper ty  

i ( H ) ( A ~ )  ~= r( i( H ) ~ ) (  A~) ) ~-1 

and we have put  Cr =-(1/r )Cr_l .  Now, since O-h = i(H)c~ 2~, compar ing  the 
last expressions, we have 

i ( H ) ( C r ( A a )  ~) = i ( H ) a  2r V[-/E ~ lH(M)  r OL 2r = Cr(Aa)  r 

(b) I f  p = 2 r -  1. Fol lowing a similar procedure ,  we first have: 

I f r = l ,  then a = 0 .  

In fact, the form o'h = i ( H ) a ,  V H  ~ ~~ is now a funct ion;  then 
from (2) we obtain 

O=dhAcrh ,  VhEA~  

(since the alternative O" h = dh A ]3 is impossible because cr h is a function).  
Then we have 

O = O - h = i ( H ) a ,  Y H  c ~ m ( M ) ,  r c~ = 0 

Assuming that the result holds for r -  1, we are going to prove it holds 
for r, that  is: 

I f  every form of  degree 2 ( r -  1) - 1 that  is absolute invariant by ~ m ( M )  
is null identically, then every form of  degree 2 r -  1 that is absolute invariant  
by ~ jH(M)  is also null identically. 
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In fact, let us consider a 2~-~ being invariant by ~IH(M) and the 
associated form O'h = i ( H ) a  2r-1E A2r-2(M), H E ~ln(M).  We have ~rh = dh ^ 
/3 with/3 e A2~r-*)-I(M), which is invariant by ~ H ( M ) ;  therefore, by the 
hypothesis, 13 = 0, and, necessarily, er h = 0. Then 

Orh =i(H)O~2r-l=o, V H e ~ m ( M ) ~ a 2 r - l = O  

and the proof  is finished. �9 

Hence, the theorem identifies all the absolute invariant forms by every 
1Hvf (their degree is even). Now we can demand all the relative invariant 
ones. The following immediate corollary of the previous theorem gives the 
answer to this problem: 

Corollary 3.3. Hypothesis: Let (M, 11) be a connected exact symplectic 
manifold with fl = dO and a c AP(M) a nondegenerate form such that it is 
a relative invariant form by every X ~ ~ l . ( M ) .  

Thesis: I f p  = 2 r - 1  [ r e  ~ / - (0) ;  that is, p is odd], then a = CO(A~~) r-1 

(C = ctn). 
I f p  = 2 r  [ r c N - ( 0 ) ;  that is, p is even], then a =0.  

Thus, all the relative invariant forms by ~ H ( M )  are odd degree forms. 

4. CANONICAL AND SYMPLECTIC TRANSFORMATIONS 

We have seen in Section 2 how the dynamics of a physical system 
(which is determined by the IHvf) is related to the symplectic structure of 
the phase space of this system. Next we want to study the relation between 
the more interesting transformations concerning the dynamics of  the systems 
and those concerning the geometry of their corresponding phase spaces. 

Attending to the dynamics we define: 

Definition 4.1. Let (M1,121) and (M2, ~2) be symplectic manifolds. A 
map ~P c C~(M1, M2) is a canonical transformation (ct) from M1 to M2 iff 
(i) ~P is a diffeomorphism (and hence dim M1 = dim M2), and (ii) the 
differential application ~ . :  ~(M1)-> ~(M2) transforms (biunivocally) the 
1Hvf of (M1, ~ 1 )  into the 1Hvf of (M2, ~r)2), that is, (]):~(~IH(M1)) = ~IH(M2) .  

From the geometrical point of view, the more interesting transforma- 
tions are the following ones: 

Definition 4.2. Let (MI,  ~1) and (M2, ~2) be symplectic manifolds. A 
map qb c C~ M2) is a symplectic transformation from M1 to M2 if[ (i) 

is a diffeomorphism (hence dim M1 = dim M2 and we also call �9 a 
symplectomorphism) and (ii) cI~'122 = 121. 
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Although the origin of  these concepts is different, the relation between 
the 1Hvf and the geometry (Theorem 2.2) induces one to think that a relation 
between them must exist, too. The Lee Hwa Chung theorem allows us to 
find such a relation. 

Theorem 4.3. Let (M1, ~1) and (M2, 1112) be symplectic manifolds and 
cb ~ C~ ME) a diffeomorphism. The nsc for �9 to be a c t  is that ~*~2  = 
C~a  (C = ctn). 

Proof ( 3 ) :  I f  �9 is a c t ,  it implies r VHIE 
~IH(M1), and according to Theorem 2.2, we have L(H2)~ 2 --0, then 

0 = qb*L(H2)n2 = L(qb,1H2)~*122 = L(Ha)~*~2 

and from the Lee Hwa Chung theorem we conclude that O'1112 = C~1.  
( ~ ) :  Conversely, VH1 ~ ~lH(M1) we have that L(Ha)I"~I = 0 and, since 

q~*~2 = C~a (by the hypothesis), we have 

0 = O*L(H1)12a = L(O,Ha)qb*-'~Q1 = L(O,Ha)a2(:~ L(O,Ha)122 = 0 

Therefore, q~,H1 c WIn(M2) and hence q~ is a ct. �9 

The constant C is the valence of the ct and when C = 1 we have a 
univalent o r restricted canonical transformation (S aletan and Cromer, 1971 ). 

The equivalence between the aforementioned concepts is an immediate 
consequence of this result: 

Theorem 4.4. Let (Ma, ~-~a) and (M2, ~2) be symplectic manifolds 
and ~ c  C~(Ma,  M2) a diffeomorphism. The following statements are 
equivalent: (a) qb is a univalent canonical transformation, (b) qb is a 
symplectomorphism. 

Theorem 4.3 leads to other interesting consequences that are sometimes 
used as tests in order to inquire into the canonical character of  a transforma- 
tion. The first concerns the Poisson brackets between Hamiltonian functions 
(which, in a symplectic manifold, are all the functions because of the 
canonical isomorphism). Previously we took into account the following fact: 

Proposition 4.5. Let (M1,1111) and (M2, 1112) be symplectic manifolds 
and @ E C~ M2) a ct and Ha e 9fIH(M1). I f  hi e A~ is a lHf  of  Ha 
in a neighborhood U1 c Ma, then every 1Hf hE E A~ of H2 = ~ , H a  
~IH(M2) in the neighborhood U2 = ~(U~) c M2 is related to ha by Chl = 
�9 *h2+k (C, k ctn). 

Proof By hypothesis, i(H1)~llu~ = dhalt:~; then, taking into account 
Theorem 4.3, we have 

O*-l(  i( Ha)121)lua = i( O ,H1)( O*-1121)loa(ua) = i( H2)~2[u2 
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On the other hand, (I)•-1 d h  1 = d ( ~ * - l h l ) ,  and hence 

i( H2)l)2lu2 = Cd ( ~*-l h,)lu2 = d ( cb*-' Chl)[u2 

but Hz~ ~ln(M2), therefore 3hzeA~ such that i(H2)~21u2=dh21u2, 
and then the result follows immediately. �9 

Now the main result is: 

Theorem 4.6. Let (M1, ~ )  and (M2,122) be symplectic manifolds and 
~P ~ C~176 M2) a diffeomorphism. The nsc for ep to be a ct is that 

qrP*{f2, g2} : C-1{@*f2, qb*g2}, Vfz, g2 ~ A~ (4) 

Proof According to the properties of the Poisson bracket, we have 
V f2, g2 c A~ 

qb*{f2, g2} : O*L(Xg2)f2 = L(@.lXg2)O*f2 (5) 

( 3 )  If �9 is a ct, since Xgzc g~m(M:), then O.lxgzc  $gm(M2) and its 
Hamiltonian function is C-~O*g2 (according to Theorem 4.4); hence 

~*{f2, g2} = L(~lxg2)dP*f2 = L(C-'Xo*g2)~*f2 = C - ' { ( I ) * f 2 ,  OP*g2} 

( ~ )  Conversely, if (4) holds, taking (5) into account, it is equivalent to 

L(r~,lxg2)dPgf2 .= C-1L(Xeo.g2)OPef2; V f 2 ,  g2 c A~ 

and necessarily 

(ID~lXg2 : c - l xdp .g2  c ~alH(M1) , VXg 2 C ~IF I (M2)  

and then dp is act .  �9 

Another property to be used as test of canonicity is given by: 

Theorem 4.7. Let (M1,121) and (M2,122) be exact symplectic manifolds 
with 121 = dO1, ~2 = d O 2 ,  and let @ c C~ M2) be a diffeomorphism. The 
nsc for �9 to be a c t  is that some function F1 c A~ locally exists [or also 
F2 c A~ such that 

@*O2-C01-dFI=O (or OP*-~OI-O2-dF2=O) (6) 

F1 and F2 are called Poincar6 generating functions of the ct and F1 = 
COp*F2-k (C, k ctn). 

Proof According to Theorem 4.3, @ is a c t  if and only if 

0 : ~)'122-- C121 : (~* dO2 - Cd01 = d( tYP*02 --  C01) 



1542 Llosa and Roy 

and, by the lemma of Poincar6, there exists locally /=1 c A~ such that 
(6) holds. The existence of F2 is proved in a similar way using ~ . -1 .  Finally, 
comparing suitably equalities, we obtain the relation between both 
functions. �9 

These generating functions are not the known mixedgeneratingfunctions 
which appear in the cl.ssical texts (Gantmacher, 1975; Goldstein, 1950). 
There is a more general concept of generating function, the Weinstein 
generating function, which includes all these (Abraham and Marsden, 1978). 

The last result relates the dynamical evolution of a Hamiltonian system 
to the canonical transformations: 

Proposition 4.8. Let (M, f~) be a symplectic manifold. A vector field 
H c Of(M) is a 1Hvf if and only if its flux is a group of infinitesimal univalent 
canonical transformations. 

Proof  Immediate because L(H) I2  = 0<=> F * f ~ - i )  = O, V H  c Of(M),  
which, according to Theorems 2.2 and 4.3, proves the assertion. �9 

5. CONCLUSIONS 

We have presented an original intrinsic proof of the Lee Hwa Chung 
theorem and we have shown that this theorem plays a role in identifying 
the canonical transformations (the more interesting ones for the dynamics) 
and the symplectic transformations (the more interesting ones for the 
geometry). This (known) result has been presented intrinsically. Sub- 
sequently, we have shown, in this geometrical context, how to obtain the 
several tests of canonicity, as well as other properties of the ct, as applications 
of the aforementioned theorem. 
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